A comparison of estimators for regression models with change points
نویسندگان
چکیده
We consider two problems concerning locating change points in a linear regression model. One involves jump discontinuities (change-point) in a regression model and the other involves regression lines connected at unknown points. We compare four methods for estimating single or multiple change points in a regression model, when both the error variance and regression coefficients change simultaneously at the unknown point(s): Bayesian, Julious, grid search, and the segmented methods. The proposed methods are evaluated via a simulation study and compared via some standard measures of estimation bias and precision. Finally, the methods are illustrated and compared using three real data sets. The simulation and empirical results overall favor both the segmented and Bayesian methods of estimation, which simultaneously estimate the change point and the other model parameters, though only the Bayesian method is able to handle both continuous and dis-continuous change point problems successfully. If it is known that regression lines are continuous then the segmented method ranked first among methods.
منابع مشابه
Generalized Ridge Regression Estimator in Semiparametric Regression Models
In the context of ridge regression, the estimation of ridge (shrinkage) parameter plays an important role in analyzing data. Many efforts have been put to develop skills and methods of computing shrinkage estimators for different full-parametric ridge regression approaches, using eigenvalues. However, the estimation of shrinkage parameter is neglected for semiparametric regression models. The m...
متن کاملa simulation comparison of Ridge regression estimators with Lars
This article has no abstract.
متن کاملImproving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach
A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...
متن کاملLiu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملPenalized Estimators in Cox Regression Model
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 2011